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INTRODUCTION

We are concerned with the saturation order of an approximation kernel
originated by a matrix transform of Fourier~Jacobi expansion. Matrix
transforms turn out to be summation methods under various conditions.
We start with a triangular matrix A = ((An•k )), n =0, 1,2, ..., k=O, 1,2, ...,
such that An,k = ° for k > n and prove a general result on saturation
problems involving approximation by Jacobi polynomials.

1

Preliminaries. Let X denote one of the function spaces C or
LP(1 ~p ~ co), on [ -1, 1]. The space C is a Banach space with norm

Ilfllx= sup If(cos(})I,
o~e~1t

and X=LP(l ~p< (0), with weight function

fEX=C, (1.1)

is a Banach space with norm

a, P> -1, (1.2)

{I" }I/P
Ilfllx= Ilfll p = 0 If(cos(}W p(~,f3)((})d(} fEX=U: (1.3 )
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Also X = L 00 is a Banach space if endowed with the norm

37

1I/IIx=ll/lloo=ess sup I/(cose)lfEX~LOC. (1.4)
o::::;;e~1t

With IE X, we associate the Fourier-Jacobi expansion

00

I(cose)~ L. F'(n)w~(X,f3)R~(X,f3)(cose),

n~O

where

w~(X,f3) = (f {R~(X,f3(cos e)}2 p(tx,f3)((J) de) -1

(2n + 0: + 13 + 1) F(n + 0: + 13 + 1) T(n + 0: + 1)

T(n + 13 + 1) T(n + 1) F(0: + 1) T( 0: + 1)

F' (n) is the Fourier-Jacobi transform of I given by

(1.5)

(1.6)

where

p~(X,f3)(x) is the nth Jacobi polynomial of order (0:,13) and degree n. The
generalized translate of I with expansion (1.5), introduced by Askey and
Wainger [1 J, is T¢I with expansion

00

T¢I(cose)~ L. IA(n)w~(X,f3)R~(X,f3)(cose)R~tx,f3)(cosrP). (1.8)
n~O

It is known that T¢ is a positive operator for 0: ~ 13 ~ -! and has operator
norm 1 (see Gasper [6J). For 11' 12 EX, the convolution II*!2 is defined
(see Askey and Wainger [1]) by
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and has the following properties. Let 11 '/2'/3 ELI and g E X. Then

(i) 11 *12 =12 *11
(ii) 11 * (/2 *13) = (/1 *12) *13

(iii) II 11 *g II x:::; II 11 III II g II x

(iv) (/1 */2r'(n)=I{'(n)I{'(n).

(1.10)

Furthermore, a positive summability kernel, a quasi-positive kernel, and
an approximation kernel have been defined by Bavinck along the lines of
Butzer and Berens [5] which is a landmark in the sphere of abstract
approximation theory and its various applications. One of the important
achievements of Bavinck is that the convolution of any approximation
kernel (satisfying his definition) with an element of X yields a strong
approximation process in X. Our approximation kernel is different from
that but it leads to the process of strong approximation in X. In the next
section we denote by X either C or LP (1 :::;p < 00) with IX?: f3?: -!.

2

Applications. The modulus of continuity w(¢J,f; X) in X is defined by
Bavinck [2] as

def
w(¢J,f;X) =w(¢J) = sup IIT"J(·)-/(·)llql;,o,fex, (2.1)O,;;;tjJ,;;;ql

Also IE Lip(y, X), 0 < y:::; 2, if there exists a positive c such that

(2.2)

The subspace Lip(y, X) of X is a Banach space if endowed with the norm

1I/IIup(y,x)= 11/1Ix+ sup (nYw(n-l,f;X))
neZ+

(2.3)

and properties of w(¢J,f; X) anologous to those of the classical modulus of
continuity that have been given by Bavinck [2].

We have (see Askey and Wainger [1] and Gasper [6])

R~C<'P)(cos e) R~C<'P( cos ¢J)

= fa" R~C<'P)(cos t/J) K(cos e, cos ¢J, cos t/J) p(c<,P)(t/J) dt/J, (2.4)
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where K(cos e, cos ljJ, cos t/J) ~ 0 is a symmetric function, Cl ~ f3 ~ -~, and

J: K(cos e, cos r/J, cos t/J) p(rx,{3)(t/J) dt/J = 1. (2.5)

Thus the generalized translate of f (cos e) ELI which has the Fourier­
Jacobi expansion (1.5), can be defined as

T,pf(cos e) ~f f(cos 8, cos r/J)

= fa" f(cos t/J) K(cos 8, cos r/J, cos t/J) p(rx.{3)(t/J) dt/J

CD

'" I fl\(n)Q)~rx,{3)R~rx·{3)(cos8)R~rx·{3)(cosr/J). (2.6)
n=O

We denote the nth partial sum of (1.5) by sn(f, cos 8) so that, by
orthogonality of R~rx·{3)(cos8), we get (cf. Szego [11, (4.5.3)]

Sn(f, cos 8) - f( cos 8)

= i r [f(cos r/J) - f( cos en Q)~rx.{3)
v=O 0

X R~rx,{3)(cos e) R~rx,{3)(cos r/J) p(rx.{3)(r/J) d¢J

= i Q)~rx,{3)r [f(cos ¢J) - f( cos e)J p(rx.{3)( r/J)
v=o 0

X {r K(cos e, cos r/J, cos t/J) R~rx,{3)(cos t/J) p<rx,{3)(t/J)} dr/J
'- 0

=f: [f(cos ¢J) - f(cos e)] p(rx,{3)(r/J) J: K(cos e, cos r/J, cos t/J)

n

X I Q)~rx.{3) R~rx,{3)(cos t/J) p(IX,{3)(t/J) dt/J d¢J
v=O

= L n fa" R~rx + 1,{3)(COS t/J) p(rx,{3)(t/J) J: [f(cos r/J) - f(cos e)]

x K(cos e, cos ¢J, cos t/J) p(rx,{3)(r/J) dr/J dt/J

using the symmetric property of K(cos e, cos,p, cos t/J). Here
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L = r(n+lX+p+2) P(IX+l,P)(1)=(1X+1)W~IX+l,P)

n r(1X+ 1) F(n+ p + 1) n 2n + IX+ p+2

(2.7)

L(n) is a slowly varying function of n in the sense of Bavinck [3 J such that
L(n) ....d and, given 8,<»0, there exist nj,nz so that nBL(n) is increasing
for n>n1 and n-OL(n) is decreasing for n>nz• Now

sn(f, cos e) - f(cos e)

= Lnr [T",f(cos e)- f(cos e)J R~IX+l.P)(cos ljI) p(IX,P)(ljI) dljl. (2.8)

Let A = ((An,k)) be a triangular matrix with An,o = 1 for all n. Then the A­
transform of series (1.5) is defined as

n

(J~A)(J, cos e) = L AAn,kSk(J, cos e),
k=O

By (2.8),

(J~A)(J, cos e) - f( cos e)

= r [T",f(cos e) - f(cos e)J K~A)(COS ljI) p(IX,P)(ljI) dljl, (2.10)

where

n

K~A)(COS ljI) ~ K~A)(ljI)= L AAn,kLkR}:+ l,Pl(COS ljI). (2.11)
k=O

3

The transform (J~A)(J, cos e) is also called the A-mean of (1.5). The
necessary and sufficient condition for the regularity of the A-method of
summation is

for k=O, 1,2, .... (3.1 )

For AAn,k=Pn-k/Pn, Pn=PO+Pl + ... +Pn,PO>O, the method A reduces
to the (N, Pn) method which is a generalization of Cesaro's method. On the
other hand, if we take AAn,k = pk!Pn ({pd non-negative, non-decreasing),
the A-method reduces to the (N, Pn) method. We consider a non-negative,
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(3.2 )for k~ i,

non-decreasing sequence {AAn,k} arising out of a lower triangular matrix
«An,k» (with An,o= 1 for all n), such that, for k=O, 1,2, ..., and i=O, 1, .."

AAn,k~M
AAn ,""

where M is any fixed positive number.
Now we intend to prove the following theorem where A is an absolute

constant, not the same at each occurrence.

THEOREM 1. Let {AAn,d be a non-negative, non-decreasing sequence
with respect to k, satisfying (3.2). Let w(¢;) be the modulus of continuity
of f E X. Then the saturation order of the kernel K~A) of the A-method of
summation is given by

II (J~A)(f, cos 8) -f(cos 8)llx

= 11(1* K~A))(. )-f(- )llx

~ (~W(1/(k+ 1)) ~ HI/Z)
""A L. (k 1)3/z+o< L. AAn,n_v(n-v+ 1) L(n-v)

k=O + v=O

+A n , (3.3)

where

(3.4 )

The saturation class or Favard's class F(X, (J(A) is the space of all fE X for
which the right side of (3.3) tends to zero as n tends to infinity and
F(X, (J(A) c X.

Further, if there exist positive numbers M I, M 2 such that, for a large
enough positive integer n,

{

MI(k+ 1r-Z/l-3/2 (n-k+ 1)-"'-112

w(l/(k + 1)) ~ or
Mz(k+ 1)",-Z/l-1/2 (n-k+ 1)-"'-3/2,

(3.5)

for k = 0, 1, 2, ..., k:%; n, and a ~ f3 ~ -1/2, then we have the following
important result.

THEOREM 2. Let {AAn,k} and w(¢;) be given as in Theorem 1 and let (3.2)
and (3.5) be satisfied. Then we have
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II (J~Al(f, cos 8) - f( cos 8)/1 x

= 11(1* K~Al)(.) - f(· )llx

(
~ w(I/(k+ 1)) ~ HI/2)

,,;;A /:::0 (k+I?/2+<X v:-o LlAn,n_v(n-v+I) L(n-v) (3.6)

and the saturation class or Favard's class F(X, (J(A)) c X is the space of all
fEX for which the right side of (3.6) tends to zero as n tends to infinity.

Remark. As pointed out in [3J, many classical results [7,8,10] for
Fourier series are carried over by (3.3) and (3.6) in a powerful way.

In the proof we use following results.

LEMMA 1 [9]. If {LlAn,d is non-negative, non-decreasing with respect to
k, then,for O";;a,,;;b,,;; 00,0< t";;n, and any n,

Ikta LlAn,n_kei(n-kltl,,;; (2n + 1) ktO LlAn,n-k' (3.7)

where r = [lit].

LEMMA 2. We have

~ w(1/(k+ 1)) ~ HI/2
An";;A k:-O (k+I)3/2+<X ;::'oLlAn,n-v(n-v+I) L(n-v)

provided (3.5) is satisfied.

Proof By (3.4), we have

(3.8)

n

A =An-2f!-2 " LlAn ~ ~n-v

v=O
(for An,o = 1 and An,n + I = 0)

n n

,,;;A L LlAn,n_v L k- 2P - 3
v=O k=v+ I

n

,,;;A L LlAn,n_v(n-v+ 1)H1/2L(n-v)
v=O

n

X L k- 2P - 3(n-k+ 1)-~-1/2

k=v+1

(for a~ -~ and L(n-V)=O(1))
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n

=A I LlAn,n_v(n-v+ 1)"+1/2 L(n-v)
v~O

X n W(ljk)[k~-2f!-3/2(n-k+l)-~-1/2J

k=~+1 kH3/2 w(ljk)

_ ~ w(lj(k+ 1))
-A k7:

0
(k+ 1?/2+c<

43

k

X I LlAn.n_ v(n-v+l)"+1/2L(n-v)
v=o

Here we used the fact that

(by the first part of (3.5)).

n

I k- 2f!-3 = A(v + 1)-2f!-2.
k~v+l

As

n

(n - v + 1) - 1 I k - 2f! - 2~ (n - v + 1) - 1 (n - v + 1) n - 2f! - 2= n - 2f! - 2,
k~v+l

we have

n

An::(A I LI)'n,n_v(n-v+1)-l
v=o

n

X I k- 2f!-2(n_k+ 1)H 3/2 (n-k+ 1)-,,-3/2
k=v+l

n

=A I LlAn,n_v(n-v+ 1)HI/2 L(n-v)
v=o

X n w(ljk) [k,,-2f!-1/2(n-k+ 1)-,,-3/2J

k~~+ 1 k H3/2 w(ljk)

=A ~ w(lj(k+l»
k7:

0
(k+ 1)"+3/2

k

X '" LlA (n-v+ 1)"+1/2 L(n-v)~ n,n-v ,
v~O

by the second part of (3,5). This proves the lemma.

LEMMA 3. If {LlAn,d is non-negative, non-decreasing, and w(¢J) is the
modulus of continuity defined by (2.1), then,for all positive integers nandfor
II. ~ - 1, we have
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n

n- 21X - 2w(l/n) L Lj)'n,n_vLn~v
v=o

~ w(1/(k+l»
:::;;A k7:0(k+ 1)3/2+tx

k

XL AAn,n_v(n-v+l)IX+I/2L(n-v). (3.9)
v=O

Proof

~ w(l/(k+l» ~ AA (n-v+l)"'+1/2L(n-v)
LJ (k+l)3/2+1X LJ n,n-v

k=O v=O

= ~ AA (n-v+l)IX+I/2L(n-v) ~ w(1/(k+l)
LJ n,n-v LJ (k+ 1)3/2+1X

v=O k=v

~ .. , L( )( 1)tx+ 3/2 w(1ln)
~ LJ LJlI.n,n-v n - v n - v+ 3/2+1X

v=O n
n

~ n -"'- 3/2w(l/n) L AAn,n_vL(n - v)(n - v + 1) IX + 3/2

v=o
n

=nIX+I/2n -21X-2w(l/n) L AAn,n-vLn_v(n-v+ 1)-IX-I/2
v=o

n

~n-21X~2w(l/n) L AAn,n_vLn~v
v=O

(for Ln- v= (n - v+ 1)21X+2 L(n - v». QED

Besides these lemmas, we use results from [11 ] without special reference.
Thus, with the help of Szeg6's Hilb-type asymptotic formula, we make use
of the following estimate (see Bingham [4]) for cln:::;; e:::;; rc - cln, where n
is large enough and a~ p~ - !:

W~IX,P) R~IX,P)( cos e)

23/2 nlX+ 1/2 cos {ne + (a + P+ 1) e12}
=rcl/2F(a+l) (sin BI2)IX+I/2 (cos BI2)P [1+0(l/n)]

23/ 2

--,-.,,--- nIX + 1/2 sin - '" - 1/2e12 cos - Pe12
rc 1/2F(a + 1)

xcos{nB+(rx+!J+l)eI2}L(n). (3.10)

Proof of Theorem 1. We have, from (2.10),

(J~A)(f, cos e) - f( cos e) = (f* K~A»(cos e) - f(cos e)
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as our result shows that change of order of summation is justified. Thus

II (j~:1)(j; cos 8) - f(cos 8)11 x

~ J: II T>jJf(·) - f(· )llx IK~A)(ljI)1 pIx, P)(ljI) dljl

= rr/(n+ I) + rr-n/(n+ I) + In

o n/(n+l) n-n/(n+l)

=P+Q+R(say).

But

n

= Aw(n/(n + 1))(n+ 1)-2X-2 L Lo"n,kLk
k=O

n

= Aw(l/n) n- 2x - 2 L LJAn,n_vLn_v
v~O

~A ~ wO/(k+ 1))
'<: L.. (k + 1)3/2 + x

k=O
k

XL LJAn,n_v(n-v+l)HI/2L(n-v)
v=O

(by Lemma 3). (3.11)

Also, let there exist an no such that, for n > no, the estimate (3.10) holds.
Then

fn-n/(n+l) I no I
Q~ w(ljI,f;X) L LJAn,kLkR~HI;P)(cosljl) p(x,P\ljI)dljl

n/(n+ 1) k=O

rn:-n/(n+l) I n I+ J w(ljI,f; X) L LJAn,kLkRkH I'Pl(cos ljI) p(x,P)(ljI) dljl
n/(n+ I) k=no+ 1

= QI +Q2 (say),

where

QI = A r ljI2H IW(ljI,f; X) f LJAn,k dljl
n:/(n+ I) k=O

=Anor ljI2x+ IW(ljI,f; X)(LJAn,no) dljl
n/(n+ I)
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(k+ 1) LlAnn-k(n -k + 1)a+ 1/2 L(n -k)
X '

(k+ 1) LlAn,n~k(n-k+ 1)a+I/2 L(n-k)

n w(I/(k+l)) (k+1)-5/2~a
= AnoLlA ,,-:.....:.....:-_--.:...:.. ------'------,-=

n,no k':::O (k+ 1)3/2+a LlAn,n_k(n-k+ 1)a+1/2

k

X L LlAn,n_v(n-v+ It+ I
/
2 L(n-v)

v=O

=A [LlAn,noJ ~ w(l/k+ 1)
LlAn,o k'::O (k+ 1)3/2+a

k

X l: LlAn,n_v(n-v+ 1)a+1/2 L(n-v)
v=O

(for {LlAn,k}J" =*" {LlAn,n_ d '" =*" {1/LlAn,n - d )" )
=A (~ w(I/(k+ 1))

k':::O (k + 1)3/2 +a

X vto LlAn,n_v(n - v+ 1)a+ 1/2 L(n - V)) (by (3.2)).

Keeping in mind that L(k) absorbs the error terms, we get, by (3.10), for
IX ?; f3?; -!,

23/ 2 fIt - ,,/(n + I) •
Qz = liZ w( ljJ )(smljJ/2V- I

/
2 (cos ljJ/2 )(3+ I dljJ

n r( IX + 1) ,,/(n + I)

,
n k a+3/2L(k) 1

x L LlAn,k
2
k f3 2cos{kljJ+(IX+fJ+ 2 )ljJ/2}

k=no+1 +IX+ +

23/2 fn-n/(n+ I) .
= 1/2 w(ljJ) sma

-
I
/
Z ljJ/2 cos{3+lljJ/2

n r(1X+ 1) n/(n+l)

\

n-nO-1 (n-v)a+3/zL(n-v)
X L LI An, n~ v.:-.---:.---~--.:..

v=O 2(n-v)+IX+f3+2

x cos {(n - v) ljJ + (IX + fJ + 2) ljJ/2 }IdljJ

f
n w(ljJ)

~ A ,/,I/Z-a dljJ
n/(n + I) 'I'

[IN] (n _ V)a+ 3/Z L(n - V)

x L LlAn,n_v 2( f3v=O n-v)+IX+ +2
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(for the integrand is positive),

n 1t/(k+1) w(t/J) [IN]

=A L f ./,1/2-a L AAn,n_v(n-v+ 1)H1/2 L(n-v)
k=O 1t/(k+2) 'I' v=O

~ w(1/(k+ 1)) ~ Hl/2
~A k':O (k+1)3/2+a v':o AAn,n_v(n-v+1) L(n-v).

Again,

R~r w(t/J)IK~A)(t/J)1 p(ex,f3)(t/J) dt/J.
1t~ 1t/(n + 1)

But
n

K~A)( t/J) == F(cos t/J) = L AAn,kLkR~H 1,f3)(cos t/J)
k=O

= All L R(a+ 1,f3)(cos ./,)n,O 0 0 'I'

n

+ L b(k)k-1W~H1,f3)R~H1,f3)(cost/J),

k=l
where

47

k = 1, 2, ..., n ~ k,b(k) = (ct + 1) Alln,k
2+(ct+!3+2)/k'

b(k) being bounded and monotonic. Thus, applying the arguments of
[3, 785-786] we see that F (cos t/J) is continuous in 0 < t/J ~ n and con­
verges uniformly in n when t/J is very near to n, i.e., when n is large enough.
In fact

K(A)(,/,) = (ct + 1) Alln,o W(H 1,f3) R(H 1,f3)(cos ./,)
n 'I' ct+!3+2 0 0 'I'

+ (ct+1)Alln,n (10 11)-1
2+(ct+!3+2)/n g

n2
X L: [log(k+1O)]k-1W~H1,P)Rt+l,P)(cost/J)

k=nl

so that we can obviously apply the cited argument and our conclusion
follows as Lllln,n ~ MLllln,o = M( 1 -Iln, 1) ~ 0 since {Lllln,k} are non-negative,
non-decreasing, and satisfy (3.2). Hence

f
1t/(n+ 1)

R=A 1/J2f3 +1 di/J
o

= An -213-2 =An'

This completes the proof of Theorem 1.

640/58/1-4
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Proof of Theorem 2.
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( ~ w(llk+l) ~ "'+I/Z)
An<;A k'::.O(k+l)3/Z+O<v'::.oLlAn,n-v(n-v+ 1) L(n-v)

by Lemma 2, under the present conditions. Thus this theorem follows by
the proof of Theorem 1.

4

Corollary of Theorem 1.

COROLLARY 1. Let LlAn.k = I/(n + 1) for k = 0, 1, 2, .... Then, if we
denote the (C, 1) mean of (1.5) by S~(f, cos e), we have

II S~(f, (.)) - f(· )llx= 11(f* K~A))(.) - f(· )llx

[

n w( 11k + 1) ]
~ A ",-liZ" + -ZfJ-Z
"" n '-- (k + 1)'" + liZ n .

k~O

(4.1 )

Proof A particular case of the proof of Theorem 1.

Also, let us merely assume that A = ((An,k)) is a triangular matrix. Then

a~A)(f, cos e) - f(cos e)

n

= L (k+ I){SL(f, cos e)-f(cos en LlZAn,k' (4.2)
k=O

Thus, by (4.1) and (4.2), we have the following general result.

THEOREM 3. For any triangular matrix transformation of (1.5), we have

II a~A)(f, ( . )) - f( . )1\ x

= 11(f* K~A))(.) - f(· )llx
n

<;A L ILl ZAn,kl(k+I)",+I/Z
k~O

x (~ w(l/(v + 1)) + (k+ 1)-"'-ZfJ-3/z) (4.3)
v'::.o(v+l)"'+I/Z ,

LIZAn,k = LlAn,k - LlAn,k + I'

for ex ~ p~ -!. The saturation class or Favard's class F(X, alA)) c X is the
collection of all f E X such that the right side of (4.3) tends to zero as n ~ 00.
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The modulus sign on the right side of (4.3) may be removed by restrict­
ing {JAn,k}' Inequality (4.3) seems to be the best possible but requires
further investigation.
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